skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Masse, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ever‐increasing demand for clean sustainable energy has driven tremendous worldwide investment in the design and exploration of new active materials for energy conversion and energy‐storage devices. Tailoring the surfaces of and interfaces between different materials is one of the surest and best studied paths to enable high‐energy‐density batteries and high‐efficiency solar cells. Metal‐halide perovskite solar cells (PSCs) are one of the most promising photovoltaic materials due to their unprecedented development, with their record power conversion efficiency (PCE) rocketing beyond 25% in less than 10 years. Such progress is achieved largely through the control of crystallinity and surface/interface defects. Rechargeable batteries (RBs) reversibly convert electrical and chemical potential energy through redox reactions at the interfaces between the electrodes and electrolyte. The (electro)chemical and optoelectronic compatibility between active components are essential design considerations to optimize power conversion and energy storage performance. A focused discussion and critical analysis on the formation and functions of the interfaces and interphases of the active materials in these devices is provided, and prospective strategies used to overcome current challenges are described. These strategies revolve around manipulating the chemical compositions, defects, stability, and passivation of the various interfaces of RBs and PSCs. 
    more » « less